supervisedPRIM: Supervised Classification Learning and Prediction using Patient Rule Induction Method (PRIM)

The Patient Rule Induction Method (PRIM) is typically used for "bump hunting" data mining to identify regions with abnormally high concentrations of data with large or small values. This package extends this methodology so that it can be applied to binary classification problems and used for prediction.

Version: 2.0.0
Depends: R (≥ 3.1.1), stats, prim (≥ 1.0.16)
Suggests: kernlab, testthat
Published: 2016-10-01
DOI: 10.32614/CRAN.package.supervisedPRIM
Author: David Shaub [aut, cre]
Maintainer: David Shaub <davidshaub at>
License: GPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: supervisedPRIM results


Reference manual: supervisedPRIM.pdf


Package source: supervisedPRIM_2.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): supervisedPRIM_2.0.0.tgz, r-oldrel (arm64): supervisedPRIM_2.0.0.tgz, r-release (x86_64): supervisedPRIM_2.0.0.tgz, r-oldrel (x86_64): supervisedPRIM_2.0.0.tgz
Old sources: supervisedPRIM archive


Please use the canonical form to link to this page.